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The e!ect of several parameters in a #uid}strip system are studied for linear/nonlinear models
in detail. Such parameters are: the number of modes in the Galerkin discretization, the length of
the strip, and the #ow velocity. The present simulation clearly shows that when nonlinear forces
are considered the response approaches a #utter-type limit cycle at supercritical #ow speeds.
The Reynolds number at which the strip begins to oscillate is about 104}105. With a further
increase of the #ow velocity the strip oscillates regularly. At higher #ow velocities the oscillation
becomes violent and irregular. The amplitude, frequency and drag coe$cient at the limit cycle
are presented as functions of the #ow velocity for a given strip. The numerical predictions are in
qualitative agreement with previous experimental data. ( 2001 Academic Press
1. INTRODUCTION

THIS WORK CONSIDERS NONLINEAR #uid}structure interaction of a "nite, #exible strip immer-
sed in an otherwise homogeneous two-dimensional #ow, as shown in Figure 1. The strip is
"xed at the leading edge, and free at the other edges. The strip is a very thin #exible surface
with a low aspect ratio, which allows us to model it as a thin plate with a very small bending
sti!ness.

The problem of the dynamic stability of an isolated #exible surface submerged in
a uniform stream is quite old, dating back to Lord Rayleigh (1879), who studied the #apping
of #ags. Rayleigh attempted to explain the phenomenon of #utter by treating the #ag as
a massless and tension-free plane surface separating two half-spaces of moving air. He
concluded that the #ag is always unstable.

Thoma (1939) was probably the "rst to revert to this problem, half a century later,
pointing out that the mass of the #ag plays an important role. He treated the #ag as an
in"nite membrane stretched by uniform tension forces. Thoma proved by a numerical
example that lateral motion is possible in the form of a pair of traveling waves which
satisfy the equations of motion and the shape of which resembles that of the #uttering
#ag.

For the particular problem of the #utter of a low aspect ratio membrane, "xed at both
ends and surrounded by a uniform #ow, both experimental and theoretical results were
presented by Stearman (1959). His theoretical results did not predict all the experimentally
observed types of #utter. The experiments reported by Stearman con"rmed, only qualita-
tively, the theoretical result, by determining a critical velocity of the #ow, at which
a low-frequency #utter was observed, in the form of small-amplitude waves traveling
downstream. However, at slightly higher velocities, a violent traveling-wave #utter, of larger
amplitude and frequency, was observed. This large-amplitude #utter was attributed by
0889}9746/01/081167#19 $35.00/0 ( 2001 Academic Press



Figure 1. (a) Model of the system. (b) The coordinate systems.
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other authors to the action of a three-dimensional #ow (unaccounted for by the theory)
which is especially signi"cant in slender membranes (Kornecki 1978).

Systematic experiments with rectangular fabric strips suspended in a vertical air stream
were reported by Taneda (1968), who found that when the strip does not #utter, the #ow
along the surface of the strip is laminar, and the wake of the strip forms a Karman vortex
street. When the strip #utters, however, the #ow separates from the surface, and is
accompanied by a large-eddy wake and a consequent sharp rise in the amplitude and the
drag force. The #ow is very complicated at the trailing edge and the Kutta condition seems
not to be satis"ed. Taneda has shown that for very small #ow speeds, the strip does not
#utter at all. As the #ow speed increases the trailing edge begins a #apping motion with
small amplitude. The value of the critical Reynolds number at which the strip begins to
oscillate is about 104. This value seems to depend largely on the nature of the small initial
disturbance, and to be nearly independent of the mass ratio and the Froude number. The
strip #utters in various oscillation modes. With a further increase of the #ow speed, the strip
oscillates with regularity. At higher #ow speeds the oscillation becomes violent and
irregular. The regular periodic oscillation can be observed only at Reynolds numbers
between 104 and 105 (Reynolds number is ;l/l, where ; is the #ow speed, l the length of
strip and l the kinematic viscosity). The frequency of the strip motion increases with #ow
velocity. The smaller the strip length, the higher is the frequency, and the heavier the strip,
the lower is the frequency. The amplitude and the drag increase abruptly at the critical
Reynolds number.

The aeroelastic instability of a suspended slender plate clamped at its leading edge and
stretched by the gravity forces and the aerodynamic friction drag (both vanishing at the free
trailing edge) was investigated by Datta & Gottenberg (1975). The aerodynamic pressure
perturbation was assumed according to the slender-body theory, and the problem was
solved by a standard direct method using a modal series and Galerkin's technique. The
derived governing equation of motion, with the aerodynamic forces being neglected, is
similar to that of a suspended #uid-conveying pipe [e.g., Paidoussis & Issid (1974);
Paidoussis (1998)]. Experiments, conducted on Mylar strips, showed a reasonable agree-
ment with the theoretical results. In the limit of vanishing #exural rigidity of the plate, these
results are valid for #ags. Violent traveling-wave-type #utter was observed at certain critical
#ow velocities. However, in spite of available results, the #utter of #ags is not yet fully
understood (Kornecki 1978).

The "rst steps for investigating the nonlinear dynamics of a simply supported strip
parallel to an ocean current were carried out by Triantafyllou (1983). The problem of the
self-excited motions of such a strip was investigated analytically, using the aerodynamic
theory of slender wings but without taking into account the bending sti!ness of the strip.
The stability boundaries of the strip were determined as a function of the external tension
on it and the hydrodynamic parameters of the problem. Finally, the amplitude of the #utter
motion was estimated by including the e!ect of the separation of the cross-#ow.
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More recently, Huang (1995) studied the #utter of cantilevered plates in an axial #ow
using a linear treatment suggested by Kornecki et al. (1976). The stability of the plate was
investigated through an initial value problem. Theodorsen's classical solution was em-
ployed for the #uid loading. Viscosity was explicitly excluded, but its e!ect was embedded in
the Kutta}Zhukovskii condition. The tension force on the plate was absent in this math-
ematical model. Huang adopted a linear analysis since he was interested mainly in the initial
stage of the instability. A predictor}corrector numerical method was developed to simulate
the transient process leading to the long-term periodic behavior. Wind tunnel experiments
were carried out and were found to agree with the theory both qualitatively and quantita-
tively.

Thus, as indicated by Datta & Gottenberg (1975), the linear governing equation of
motion of the suspended strip, with the aerodynamic forces being neglected, becomes
similar to that of a cantilevered #uid-conveying pipe [e.g., Paidoussis & Issid (1974)]. This
similarity remains valid also in the nonlinear case. In this latter case, the strip may be
considered to be inextensible, and the nonlinearities are mainly geometrical, generated by
the large curvature the strip assumes in the course of its arbitrary motions (Holmes 1977).
The strip aerodynamic behavior is approximated by slender-body theory.

Most of the foregoing works have studied cantilever plates, or strips, with one "xed edge,
disregarding the nonlinear e!ects of the #uid}structure interaction. The present paper
attempts to take into account the in#uence of the nonlinear e!ects from both geometrical
and aerodynamical sources on the strip dynamics.

2. DERIVATION OF THE EQUATION

The current derivation generalizes the planar linear equations of Datta & Gottenberg
(1975) and the planar nonlinear equation of Lundgren et al. (1979) for a #exible strip
hanging vertically in an axial #ow (Figure 1).

The basic assumptions for the strip are as follows: (a) the strip has a uniform rectangular
cross-section with length l, width H, constant mass per unit area m, and #exural rigidity D;
(b) the strip is long compared to its thickness a and its width H, and the e!ects of rotary
inertia and shear deformation are ignored; (c) the center plane of the strip is inextensible;
(d) the strip is elastic and initially straight; (e) a plane section before the deformation remains
a plane during the deformation; (f ) the e!ects of the internal dissipation of the strip material
are neglected; (g) the motion is planar and the de#ections of the strip h (s, t) are large, but the
strains are small; (h) the strip is clamped at the upstream edge and is free at the downstream
one.

The basic assumptions regarding the #uid #ow are as follows: (a) the #uid is incompress-
ible; (b) the incoming #ow is uniform and of a constant velocity ;.

In the undeformed state the strip extends along the X
1
-axis of the Cartesian coordinate

system (X
1
X

2
X

3
) in the direction of gravity and oscillates in the (X

1
X

2
) plane (Figure 1).

Let (X
1
, X

2
, X

3
) represent the position of a material point O in its original state, and (x, y, z)

the position of the same material point in the deformed state. The displacement of that
material point is de"ned as

v"x!X
1
, h"y!X

2
, w"z!X

3
.

The strip, in its initially undeformed state lies along the X
1
-axis, and when undergoing

motions in the (X
1
, X

2
) plane, retains X

2
"0, so that y is identical to the displacement

h(s, t), since the strip does not stretch. Thus, all the other physical quantities and the "nal
governing equation can be expressed in terms of (s, t). The strip plan-form is given by
04s4l; 04z4H.
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Let us introduce the orthogonal system of coordinates n, q connected to the strip
(Figure 1). The n and q axes are normal and tangent to the center-plane of the strip,
respectively.

The equations of motion in the v- and h-direction have been derived by Lundgren et al.
(1979). When the aerodynamic drag force, as given by Hoerner (1975), is added, the
equations of motion become

m
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#D
L4v

Ls4
!

L
Ls A(¹!Dk2)

Lv

LsB!mHg!(Dp#F
n
)
Lh
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!Fq

Lv

Ls
"0, (1a)
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LsB#(Dp # F
n
)
Lv

Ls
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Lh

Ls
"0, (1b)

where m"o
0
a, m*"(o

0
!o)a.

The pressure di!erence across the strip Dp was postulated in accordance with slender-
wing theory (Katz & Plotkin 1991)

Dp"MA
L
Lt
#;

L
LsB

2
h (s, t) (2)

and the curvature k is given by

k2"(L2v/Ls2)2#(L2h/Ls2)2.

An additional equation is provided by the constraint on the length of the centerline,

(Lv/Ls)2#(Lh/Ls)2"1. (3)

The boundary conditions are

h"Lh/Ls"0 at s"0,

L2h/Ls2"L3h/Ls3"0 at s"l. (4)

In equations (1)} (4), M"onH/4 is the &&added mass'' of a cross-section of the strip per unit
area (Datta & Gottenberg 1975). The values o

0
, o are the densities of the strip material and

the #uid, respectively, g is the acceleration due to gravity, and ¹ is the tension force. The
terms F

n
, Fq are the normal and tangential aerodynamic forces acting on the strip by the

#ow. The normal aerodynamic force per unit area of the strip is de"ned, as proposed by
Hoerner (1965, 1975) and Triantafyllou (1983), i.e.,

F
n
"q (C

n
;

R
D;

R
D#1

2
nA;

R
), (5)

where q"o;2/2 is the dynamic pressure; A"H/l is the aspect ratio of the strip and ;
R

is
the cross-#ow component of the velocity. The notation ;

R
D;

R
D was used in order to assure

that the resulting force is in the direction of the cross-#ow velocity (Triantafyllou 1983).
The nondimensional cross-#ow component of the velocity is given by

;
R
"

(Lh/Lt#; Lh/Ls)

;
. (6)

The value of C
n

in expression (5) is not known for the hydroelastic case. To a "rst*and
rather crude*approximation, C

n
can be considered equal to that of a rigid low aspect ratio

wing inclined to the #ow. In the case of rigid wings, the value of C
n
is independent of the

Reynolds number of the cross-#ow, and depends only on the aspect ratio of the wing
(Hoerner 1975). For the case of an in"nitely long wing, i.e., zero aspect ratio, C

n
is equal to
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the drag coe$cient of a #at plate, which is equal to two. The value of C
n

decreases with
increase in aspect ratio and approaches zero as the aspect ratio approaches in"nity.
Experimental values for C

n
have been presented by Hoerner (1975), Triantafyllou (1983) and

others for various aspect ratios. These values can be quantitatively estimated by the
expression

C
n
"C

0
e~A@2, (7)

where C
0
"2, A(1.0.

The tangential aerodynamic force per unit area of the strip is (Datta & Gottenberg 1975)

Fq"qCq , (8)

where the drag coe$cient Cq , for a laminar #ow, is given by Blasius (White 1991) as

Cq"1)328Re~1@2
s

(9)

and for a turbulent #ow by White (1991) as

Cq"0)054Re~1@7
s

. (10)

Here Re
s
";s/l is the Reynolds number, s is a curvilinear coordinate along the strip, l is

the kinematic viscosity of the #uid.
Equations (1) are coupled through the curvature k, axial force ¹ and the aerodynamic

forces F
n
and Fq . In order to derive a single equation of motion in terms of h(s, t), the "rst

equation is integrated from s to l, divided by Lv/Ls to yield
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n
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where B"(h@)2. The dot and the prime denote the derivatives with respect to time t and to
the curvilinear coordinate s, respectively.

By using condition (3) we can eliminate v and its derivatives via

v"P
s

0

J1!B ds, vR"!

1

2 P
s

0

BQ
J1!B

ds, v("!

1

2 P
s

0
A

B$
J1!B

#

BQ 2
(1!B)3@2B ds,

v@"J1!B, vA"!

1

2

B@

J1!B
, A

h@

J1!B
v@@@B

@
"!A

h@

J1!B A
B@

2J1!BB
@
B
@
. (12)

Substituting equations (11) and (12) into (1b) a single equation describing the dynamics of
the strip is obtained:
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Equation (13) describes the #ow-induced transverse vibration of a #exible strip hanging
vertically in a parallel #ow.
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Removing the expression braces, in equation (13) may be rewritten as

mh$#
(Dp#F

n
#mHgh@)

J1!B
#D Ah@@@#

h@

J1!B A
B@

2J1!BB
@
B
@

#

mh@

2J1!B P
s

0
A

B$
J1!B

#

BQ 2
(1!B)3@2B ds!¹(s, t)h@@"0,

¹(s, t)"
1

(1!B)3@2 P
l

s

((Dp#F
n
)h@#mHg#FqJ1!B) ds

#

m

2(1!B)3@2 P
l

s
P

s

0
A

B$
J1!B

#

BQ 2
(1!B)3@2B dr ds. (14)

For planar motions the transverse displacement is assumed to be &&small'' relative to the
length of the strip, i.e., h+O(e), where e;1. Small but "nite strip rotations imply that
B"(h@)2 cannot be neglected compared to unity, whereas (h@)4 and higher-order terms can.
In this way, the general nonlinear equation of the strip motion (14) becomes
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Equation (15) is similar to the equations of motion of pipes conveying #uid previously
obtained [e.g., Semler & Paidoussis (1994)], except for the drag terms that exist in this
equation, the external #ow has a constant #ow velocity, and the e!ect of the internal #uid
mass is absent.

Equations (13}15) involve aerodynamic, elastic and inertial nonlinearities; see, e.g.,
Jensen (1997). A study of the separate in#uence of di!erent nonlinearities on #exible strip
motion is not examined in the framework of the present paper. In this regard, we must note
that, strictly speaking, almost all nonlinearities in equations (13}15) are of geometrical
nature (Kovacs & Ibrahim 1993) due to large de#ections of the strip. The described
classi"cation of nonlinearities is conditional but it is often used (Grespo da Silva &
Zaretzky 1990; Pai & Nayfeh 1990).

In equations (13}15), the aerodynamic nonlinearities m term F
n

are of second order of
magnitude, while all other terms are of higher order. If equations (15) are restricted to
second order, we get the equation with one nonlinear term, F

n
only. Numerical study

shows that the aforesaid term F
n

ensures the existence of #utter limit-cycle oscillation,
cf. Triantafyllou (1983).
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Estimations of the in#uence of the elastic and inertial nonlinearities are given in Grespo
da Silva & Zaretzky (1990), Pai & Nayfeh (1990), Shyu et al. (1993), where the nonlinear
characteristics of a cantilever beam change from &&hard'' to &&soft'' in the second mode. This is
caused by the interaction between inertial and elastic nonlinearities. For the "rst mode the
elastic nonlinearity dominates and yields a &&hard'' cubic nonlinearity. For the higher modes
the inertial nonlinearity dominates and gives a &&soft'' cubic nonlinearity. Note that these
results were obtained in the absence both of aerodynamic forces and gravity.

In our opinion the question of the combined in#uence of all three nonlinearities on strip
motion is very delicate and di$cult, and demands considerable research e!ort. We hope to
devote additional attention to this question in the future.

Introducing next the nondimensional quantities:
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the equation of motion (15) may be written in a nondimensional form as follows:
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In addition to the strip amplitude and the frequency of the limit cycle, there is also interest
in the aerodynamic drag force (Taneda 1968). The aerodynamic drag force coe$cient, per
unit area of the wetted surface, may be written as follows:
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The total aerodynamic drag force coe$cient per unit area of the wetted surface, C
D
, may be

obtained from equation (18) for m"0:
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Now equation (16) is to be solved, subject to the following boundary conditions:

g"g@"0 at m"0, gA"g@@@"0 at m"1. (20)

3. METHOD OF SOLUTION

We have applied a standard method, based on Galerkin's technique, for the numerical
solution of equation (16); see, for example, Datta & Gottenberg (1975). The solution is
represented by the series
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=
+
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where g is expanded in terms of the eigenfunctions of the equation
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As shown previously [e.g. Semler & Paidoussis (1996)], equation (16) is reduced to a set of
second-order nonlinear di!erential equations of the type

M
n
Q$ #B

n
QQ #K

n
Q"F(Q$ , QQ , Q, qJ ), (23)

where Q, M
n
, B

n
, K

n
are the generalized displacement, mass, damping and sti!ness,

respectively; F is the nonlinear function of the elastic, dissipative and inertia forces.
In order to use the numerical procedure of solution for the system, it is necessary to

express (23) in a normal form yR "FI (y, t), y (0)"y
0
.

This problem is solved in two steps: reduction of the system order by a standard
replacement of variables, and a numerical determination of Q$ where necessary, in the
process of the numerical integration to obtain the normal form. We used the Gear method
(Gear & Petzold 1984) for the numerical integration and the modi"ed Powell method
(More et al. 1980) for determining Q$ in the procedure of calculation, for the derived right
part of the normal form. The solution, equation (21), is used in the form

g (qJ , m)"
N
+
j/1

Q
j
(qJ )U

j
(m), where N52. (24)
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The selection of the required value for N, is a subtle question, as shown in the following,
and is a topic for discussion. A numerical study has indicated that a physical time of 12 s
was su$cient for the development of the oscillation process. The results shown below
are obtained during 1 s of oscillations, usually between the 11th and 12th seconds. There
exist enough data about the process within 1 s to acquire con"dence in the nature of the
solution.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. GENERAL NATURE OF RESULTS

In order to establish con"dence in the present mathematical model for strip motion,
equation (16), a numerical study was conducted. The principal di$culty is that the number
of modes required for a given desired accuracy increases (and consequently also the
computation time) as the aspect ratio decreases. The convergence problem is further
discussed in the next section.

A typical #utter computation time is of the order of 10 min for eight modes on the PC
Pentium II (Intel 200 MHz, 64 MB RAM).

In general, the behavior of the strip response can be described as follows. For velocities
lower than the critical speed, the strip oscillations display spatiotemporal decay. At speeds
higher than the critical one, the oscillations display #utter with temporal ampli"cation of
the amplitude until a limit cycle is obtained.

All results have been obtained for the following initial conditions:

h
1
(0)"a, h

j
(0)"0, hQ

j
(0)"0, j"2, 3,2, N, (25)

where N is the number of eigenmodes in expansion (24).

4.2. THE HOPF BIFURCATION

The system parameters for the strip are chosen as follows: the density of air o"1)07 kg/m3;
the density of strip o

0
"3900 kg/m3; the #exural rigidity of the strip D"323a3 MN/m2; the

kinematic viscosity of the air l"0)15 cm2/s; the thickness of the strip a"0)05 mm; the
length l of the strip is varied between 0)1 and 1)0 m; the width H"0)025 m; and the #ow
velocity ; is gradually increased.

For high enough ; the hitherto stable static equilibrium is lost, giving birth (if non-
linearities are taken into account) to a stable limit cycle. This de"nes a Hopf bifurcation
(Holmes 1977), or #utter in aerolastic terminology. The critical value ; for the Hopf
bifurcation may be found by solving the eigenvalue problem of the linearized system
(Datta & Gottenberg 1975). However, the nonlinear treatment is of interest in two respects.
In the "rst place, it enables us to evaluate the amplitudes of the de#ections and the total
drag force when the critical #utter velocity is exceeded. Secondly, it is to be expected that
the nonlinearity of the aerodynamic forces can introduce new aerolastic e!ects not
observed at moderate velocities. These aspects of the problem have been considered
by Bolotin (1963); that work deals in particular with examples of problems in which
the aerodynamic forces are able to maintain undamped motion at velocities less than
the critical velocities determined by the linear theory, when a large enough disturbance
acts on the system. In such cases the critical velocity determined by the methods of the
linear theory of aeroelasticity is only the upper limit of the critical velocities for actual
structures.



Figure 2. The calculated critical #ow velocity for the Hopf bifurcation as a function of: (a) the number of modes,
N, in the Galerkin discretization for linear (*d*) and nonlinear (*s*) models; (b) the length of the strip, l, for
linear (*d*, N"4; *j*, N"8) and nonlinear (*s*, N"4; *h*, N"8) models; m, the experimental

results by Datta & Gottenberg (1975).
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4.3. RESULTS AND DISCUSSION

In the numerical results presented in Figure 2(a) the number of terms in expansion (24) were
varied from N"2 to 10. The length of the strip was l"0)25 m. The values of the critical
velocity computed by the nonlinear equation became appreciably less than those of the
linear equation. Note that starting with a certain number of modes in expansion (24)
the variation of the computed critical velocity is small. This number of modes is six for the
linear case and eight for the nonlinear case.

Figure 2(b) presents the results of the numerical solutions of the linear and nonlinear
equations for N"4 and 8 in expansion (24). Presented here are the values of the critical
velocity versus the strip length. The experimental results of Datta & Gottenberg (1975) are
also presented.

It ought to be mentioned that the critical air velocities were determined by Datta &
Gottenberg (1975) in two ways: &&"rst, visual observation of the test strip revealed virtually
no motion well below the critical speed, some tendency at times to oscillate with increasing
amplitude as air speed increased, and "nally a violent oscillation with the free end of the
strip reaching the tunnel walls just as the critical speed was attained; second all these
disturbances were sensed by a force transducer with a recorder pen being suddenly driven
o! scale in the y-axis direction at the critical speed''. Evidently, the critical velocity was "xed
by Datta & Gottenberg in two ways for violent oscillations with the free end of the strip
reaching the tunnel walls. These oscillations arose at a #ow velocity higher than the critical
one. The computations for N"8 (see below) show that the #ow velocity of violent
oscillations lies beyond the critical velocity and is larger than 3)08 m/s.

The numerical results show that there are distinctions in the level of the solution: the
stability boundary of the nonlinear system lies below the stability boundary of the linear
system. The di!erence in the values of the critical velocity for a given length of the strip, as
determined by linear and nonlinear theory, is attributable to the e!ect of the initial
condition (Reynolds & Dowell 1993). This di!erence in the critical velocities decreases when
increasing the length of the strip.

Figure 3 shows the sensitivity to initial conditions for the strip motion. The results are
presented for the #ow velocity ;"2)125 m/s, strip length l"0)25 m and the following
initial conditions:

(a) h
1
(0)"100a, (b) h

1
(0)"a, (c) h

1
(0)"0)01a; and

h
j
(0)"0, j"2, 3,2, N, hQ

j
(0)"0, j"1, 2,2, N, in all cases, (26)



Figure 3. The free-end behavior of the strip for three variants of initial conditions: (a, b) h
1
"100a; (c, d) h

1
"a;

(e) h
1
"0)01a; (a, c, e) give the full time history; (b, d) show the last 2 s.
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where a is the strip thickness. An analogous type of set of initial conditions is generally
accepted (Bolotin 1963; Ventres & Dowell 1970; Paidoussis et al. 1991).

An initial de#ection of the order of the strip thickness or more is physically equivalent to
a large disturbance of a strip [Figure 3(a}d)]. This &&large disturbance'' allows us to "nd
from equation (15) the boundary of #utter-like oscillations below the linear #utter boundary
(Figure 2). All the calculations for the so-called &&large disturbance'' indicate that the
limit-cycle characteristics (amplitude, frequency) generally do not depend on the initial
conditions (Ventres & Dowell 1970; Paidoussis et al. 1991; Paidoussis 1998).

A de#ection of the order of 0)01a or less is physically equivalent to a small disturbance
[Figure 3(e)] and allows us to "nd the #utter boundary close to the linear #utter boundary.
Figure 3 shows an increase of critical velocity in the direction of the boundary of the linear
stability as the initial strip de#ection decreases.

Unfortunately, we did not "nd from equation (15) the exact threshold of the initial
condition, below which the system is stable until the linear #utter velocity is reached, and
above which the system goes to a limit-cycle oscillation.

The decrease of the above-mentioned di!erence in the critical velocities when increasing
the strip length, as shown in Figure 2(b), may be attributed to the following. The normal
aerodynamic force F

n
has a &&hard'' nonlinearity (Bolotin 1963), in the sense that the sign of
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the nonlinear contribution coincides with the sign of the cross-#ow component of the
velocity ;

R
[equation (5)]. Bolotin (1963) showed that whenever the aerodynamic forces

have a &&hard'' nonlinearity, their e!ect on the behavior of an elastic system will be
essentially opposite to the e!ect of an elastic nonlinearity. An increase in the elastic
nonlinearity causes a reduction in amplitude in the case of a steady #utter. Whenever there
is a considerable elastic nonlinearity, the excitation of a #utter on the boundary of the
instability region will be &&soft'', in the sense that if the critical velocity is slightly exceeded,
the amplitudes of steady #utter will be small. In other words, the stability boundary will be
&&safe''. Conversely, when the aerodynamic nonlinearity predominates, the excitation of
oscillations on the boundary of the instability region can be &&hard'', and the boundary of the
stability region becomes &&unsafe''. In this case, the aerodynamic forces can maintain states
of motion other than the undisturbed state, even when the undisturbed motion is stable
with respect to small disturbances. Hence, the critical velocities determined from the
linearized equations are the upper critical velocities (Figure 2). The lower critical velocities
we can de"ne as velocities at which the excitation of a steady #utter motion becomes
possible. Thus, the elastic nonlinearity in the relationship between the longitudinal strain
and the transverse displacement of the #exible strip causes a reduction in #utter amplitude
and belongs to the &&hard'' type; however, the e!ect of inertia and aerodynamic nonlineari-
ties on the behavior of the strip will be essentially the opposite.
Figure 4. (a, c, e) The streamwise envelope of the #uttering strip and (b, d, f ) corresponding limit-cycle oscillation
parameters (displacement and frequency) of the free strip edge for di!erent values of strip length l and #ow velocity

;; (a, b) l"0)1 m, ;"2)75 m/s; (c, d) l"0)25 m, ;"2)2 m/s; (e, f ) l"1)0 m, ;"3)7 m/s.



Figure 5. Variation of the oscillation parameters (h, f, and C
D
) versus the number of modes, N, for the

corresponding critical #ow velocities: *d*, linear model; *s*, nonlinear model.
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The gravity force m*g and the tangential aerodynamic forces Fq increase the strip tension
[equation (14)] and thereby cause a reduction in the #utter amplitude (Paidoussis 1970).
This e!ect is opposite [equation (13)] to both inertial and aerodynamic nonlinearities and
depends upon the strip length. The correlation of the foregoing forces changes the nonlinear
characteristics of the strip from &&soft'' to &&hard'' type as the strip length is increased. Indeed,
with increasing strip length, the sensitivity of the strip to #utter at the pre-critical velocities
rapidly decreases. This leads to a decrease in the di!erence between the results (the stability
boundary) by linear and nonlinear theories as the strip length increases (Figure 2). Note that
&&hard'' excitation takes place for the strip with the nonlinear characteristics of the &&soft''
type and, on the other hand, &&soft'' excitation takes place for the strip with the nonlinear
characteristics of the &&hard'' type (Bolotin 1963).

Figure 4(a, c, e) shows that an increase of the strip length from 0)1 to 1 m slightly changes
the streamwise envelope of the #uttering strip immediately after the critical velocity is
reached. At the same time, Figure 4(b, d, f ) shows a decrease of the amplitude and frequency
of the #uttering strip, each being a result of the decrease in the e!ects of both the inertial and
the aerodynamic nonlinear forces, leading to a &&soft'' excitation of the #utter on the
boundary stability. The nonlinear boundary of the stability comes closer to the linear one
(Figure 2).

In Figure 5(a}c), three sets of curves are presented to show the dependence of the
computed results on the number of modes in expansion (24) in the numerical solution of the
linear and the nonlinear equation (16). The computed results of the tip displacement h,
the frequency of oscillation f, and the coe$cient C

D
are shown, respectively, for the strip

length l"0)25 m and at the critical air speeds, corresponding to the number of modes in
expansion (24) [see Figure 2(a)]. The results show a large variance when the number of
modes is smaller than seven. The nonlinear solutions for the tip displacement and the
frequency are close to those of linear theory; however, not surprisingly, the computed C

D
is

much higher in the nonlinear solution.
The tip displacement, frequency and drag coe$cient of the #uttering strip computed by

equation (16) at air speed ;"3)75 m/s, which well exceeds the critical velocity, are
presented in Figure 6 for a varying number of modes. Figure 6 shows that for number of
modes larger than "ve the calculated characteristics of the oscillations are irregular. The
oscillations may be considered chaotic in this case.

The results for the strip (l"0)25 m, H"0)025 m) with an initial disturbance h"a are
represented in Figure 7. The calculations were for N"8 in expansion (24). The columns
(a, b, c) correspond to subcritical (;"2)0 m/s), critical (;"2)1 m/s) and supercritical
(;"2)2 m/s) air velocities, respectively. The upper plots show the horizontal displacement



Figure 6. Variation of the oscillation parameters (h, f, and C
D
) for a supercritical #ow velocity, ;"3)75 m/s,

with increasing number of modes, N, for the nonlinear model of the #attering strip.

Figure 7. Three simulations: (a) subcritical,;"2)0 m/s, (b) critical,;"2)1 m/s, (c) supercritical,;"2)2 m/s,
and the natural frequencies (at ;"0)1 m/s), for a strip with l"0)25 m, H"0)025 m.
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as a function of time. Note the di!erence in scales. The corresponding projections of the
phase space are shown in the second row. In the third row the results of the Fourier analysis
of the strip oscillations are represented. The lowermost row contains 3-D plots to illustrate
the wave structure of the strip behavior.

Column (a) shows that the motion is clearly decaying and the fast Fourier transform
(FFT) clearly indicates the presence of two frequencies. The projection of the phase space
clearly resembles a stable focus (Andronov et al. 1966). There is no damping in the structural
model (16); therefore, if there were no aerodynamic damping, the simulated motion would
persist forever. However, the aerodynamic model provides damping through radiation of
energy to in"nity along the wake behind the strip, although viscosity does not appear
explicitly in the aerodynamic damping forces. In column (b) of Figure 7 the response to an
initial disturbance very close to the critical air velocity is shown. It seems that a limit cycle
has developed instead of a stable focus, and the two distinct frequencies, shown in column
(a), have now merged. The merged frequency lies between the two previous frequencies from
column (a), thus indicating a coalescence in natural frequencies, typical of coupled-mode
#utter. However, the amplitude of the apparent limit cycle and frequency depend on the
initial condition. Most likely, therefore, the response is not truly a limit cycle, but either
a very slightly stable or very slightly unstable focus (Preidikman & Mook 1997).

The response to an initial disturbance at a supercritical air speed is shown in column (c).
Again there is only one frequency as in column (b), but now a stable limit cycle appears in
the phase plane instead of an unstable one. The frequency is near the natural frequency of
the third mode [Figure 7(c)]. The process of transition to a stable limit cycle of oscillations
is relatively slow and takes about 12 s approximately.

In simulations such as the current one, the #ow serves as either an in"nite source of
energy or an in"nite sink. At subcritical velocities the airstream absorbs energy from the
strip and damps its motion; at supercritical velocities it excites the strip and the
amplitude of the motion grows and approaches the amplitude of a stable limit cycle.
Here the response of the strip is a true limit cycle as shown in Figure 7(c).

In the bottom row the space}time illustration of the wave structure for the strip behavior
is presented. In the subcritical range we can see that the wave motion is clearly decaying
along the strip towards the free edge [Figure 7(a)]. The process is a multiwave one.
Contrary to the subcritical case, in the critical and the supercritical cases the wave structure
is that of a standing wave [Figure 7(b, c)]. The amplitude of the wave increases towards the
free edge. Taneda (1968) observed similar results for vertically hanging #ags.

Three sets of the calculated parameters in a wide range of post-critical velocity domain
are shown in Figure 8(a}c) The upper plots show the tip displacement h, the frequency f of
the oscillation of the free edge and the total drag coe$cient C

D
, respectively, versus the #ow

velocity. The lower row shows the dependence of the three aforenamed parameters on the
#ow velocity in the vicinity of an air speed of ;"2)38 m/s. The calculations were carried
out for the previously noted example and for N"8 in expansion (24). The #utter computa-
tion time, of one variant, is in the order of 10 min for N"8. The calculations are computed
for 12 s of the simulated motion.

The results in Figures 7 and 8 show that four distinct types of solution may occur, as
follows.

(i) Solutions converging to a stable equilibrium for subcritical air velocities
(;(2)1 m/s), [Figure 8(a)]. The wave motion is decaying along the strip towards the free
edge [Figure 7(a)].

(ii) Periodic solutions, corresponding to regular oscillations, whose above-mentioned
parameters slowly increase on increasing the air velocity from 2)1 to 2)38 m/s [Figure 8(a)].



Figure 8. Dependence for the calculated parameters of the #uttering strip, showing (a) h, (b) f, (c) C
D

as
a function of ;, for N"8; lower row shows an enlargement of the circled areas in the upper "gures.
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The envelope of the amplitudes of the strip motion along the strip has a shape which is close
to that of a standing wave [Figure 7(b, c)]. A jump in the response (h, f, C

D
) occurs at

;"2)38 m/s.
(iii) Periodic solutions corresponding to regular oscillations take place for a further

increase of the #ow velocity until;"3)08 m/s. The envelope of the amplitudes of the strip
motion also has a shape which is close to that of a standing wave. The jump-like transition
from regular oscillations to irregular motions takes place at ;"3)08 m/s.

(iv) Irregular oscillations for air velocities higher than ;"3)08 m/s. The solutions
acquire the shape of traveling waves along the strip in the direction of the trailing edge. The
steep change in the response of the calculated parameters is even steeper at ;"3)08 m/s
than the one observed at ;"2)38 m/s.

Thus for small #ow velocities, ;(2)1 m/s, the strip does not #utter at all. As the #ow
velocity is increased and reaches the critical speed ;+2)1 m/s, the trailing edge of the
strip begins a #apping motion with small amplitude and constant frequency.
Further increase of the #ow velocity increases both the amplitude and the frequency
of the regular oscillations. At higher #ow velocity, ;'3)08 m/s, the oscillations
become violent and irregular. This is in agreement with the observations of Datta &
Gottenberg (1975). The transition from regular to irregular oscillations occurs as a jump
in the parameters of motion at ;"3)08 m/s. The character of the regular oscillations
is of a standing-wave type, while the irregular oscillations have a traveling-wave
characteristic.

The present simulations predict the onset and the evolution of #utter of the strip in
qualitative agreement with the experimental work (Taneda 1968; Datta & Gottenberg
1975), and is consistent with the assertion of Bolotin (1963) as to the e!ect of nonlinear
terms in the simulation.
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5. SUMMARY AND CONCLUSIONS

A nonlinear mathematical model has been developed in order to study the evolution of
disturbances in a "nite, #exible strip hanging vertically and subjected to a uniform parallel
#ow. A series of numerical experiments have been conducted for the linear/nonlinear model
for various strip lengths. The study was focused on the range of #ow velocities at which
small initial disturbances begin to develop into an aeroelastic instability that leads to
a limit-cycle oscillation. In the range of the #uid}structure parameters that were studied,
eight modes should be employed to obtain quantitative accuracy.

The main conclusions obtained by the present study are as follows. For small #ow
velocities the strip does not #utter at all. As the #ow velocity is increased, the trailing edge of
strip begins a regular #apping motion with small amplitudes. The strip oscillates regularly
with a standing-wave type of motion. A further increase of the #ow velocity leads to a steep
jump of the parameters of the #apping motion. However, the strip continues to #ap
regularly, in this range, with a standing-wave type of oscillation. At a higher #ow velocity,
a second jump in the parameters of the motion occurs. However, at this velocity the nature
of the oscillation changes into a nonregular, traveling wave in the direction of the trailing
edge. No further signi"cant change in the strip response at higher #ow velocities has been
observed.

The present numerical study predicts the onset and the evolution of #utter of the strip.
Although the present simulations provide mainly a solution in the time domain, the
comprehensive model of the strip motion in the #ow also allows one to study the wave
structure.
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APPENDIX: NOMENCLATURE

A H/l, aspect ratio
a strip thickness
B
n

generalized damping
C

D
drag coe$cient per unit area of the wetted surface

C
c

1
2
nA, lift coe$cient due to the circulation

C
n

lift coe$cient due to the lateral-edge vortex #ow
C

0
drag coe$cient of the straight strip in normal #ow

Cq drag coe$cient due to the skin friction
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D Ea3/[12(1!k2)], #exural rigidity
E modulus of elasticity
F
n

normal aerodynamic force per unit area
Fq tangential aerodynamic force per unit area
f frequency
g acceleration due to gravity
H strip width
K

n
generalized sti!ness

k curvature
l strip length
M 1

4
onH, &&added mass'' of a cross-section strip

M
n

generalized mass
m o

0
a, strip mass in vacuum per unit area

m* (o
0
!o)a, strip mass in #ow per unit area

N dimension of modal basis
Q

j
generalized coordinates

q 1
2
o;2, dynamic pressure

Re
4

;s/l, Reynolds number based on s
Re ;l/l, Reynolds number based on l
s curvilinear coordinate along the strip
¹(s, t) dimensional tension force
t time
; freestream air velocity
< ;(ml2/D)1@2, nondimensional air velocity
v, h, w de#ection of strip in x, y, z directions
X

1
, X

2
,X

3
Cartesian coordinates in the original state of strip

x, y, z Cartesian coordinates in the deformed state of strip
n, q orthogonal system coordinates
c m*gl3/D, nondimensional parameter of gravity
d M/m, spanwise mass ratio
e accuracy
g h/l, nondimensional de#ection of the strip
j eigenvalue
k Poisson's ratio
l kinematic viscosity of the #uid
m s/l, nondimensional coordinate along the strip
o
0
, o densities of the strip and #uid, respectively

p ol/2m, streamwise mass ratio
q8 t(D/ml4)1@2, nondimensional time
U

j
(m) beam eigenfunctions
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